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• Introduction

• What is vector and embedding

• Search concept

• PostgreSQL as vector store

• Vector indexes deep dive

• Demo: AI powered similarity search using pgvector

• Questions



GENERATIVE AI

Artificial intelligence (AI)
Any technique that allows computers to mimic human intelligence using logic, 
if-then statements, and machine learning

Machine learning (ML)
A subset of AI that uses machines to search for patterns in data to build logic 
models automatically

Deep learning (DL)
A subset of ML composed of deeply multi-layered neural networks 
that perform tasks like speech and image recognition

Generative AI
Powered by large models that are pre-trained on vast corpora of 
data and commonly referred to as foundation models (FMs)



E M B E D D I N G S  R E P R E S E N T I N G  

S I M I L A R  C O N T E X T / V E C T O R S  C A N  

F O R M  C L U S T E R S

VECTOR SPACE



WHAT ARE VECTOR EMBEDDINGS?

New York

Beijing

Animal

0.027 -0.011 -0.023…

0.025 -0.009 -0.025…

-0.011 0.021 0.013…

Text Embeddings

Embedding model

Paris 0.024 -0.012 -0.021…

Horse
-0.009 0.019 0.015…

Airplane -0.048 0.079 0.076…



WHAT IS A VECTOR EMBEDDING ?

• A numerical representation of words or sentences, used in NLP

• NLP models can easily perform tasks such as querying, classification, and 

applying machine learning algorithms on textual data

“I am at PostgreSQL Conference 2025”

[0.743, 0.720, -0.325, 0.195, 0.835, -0.945]

n-dimensional vector



VECTOR DATABASES

Pinecone

Weaviate

Milvus

Chroma

Pgvector



POSTGRESQL AS A VECTOR STORE



RISKS OF NOT UPGRADING POSTGRESQL DATABASE

Limitations of traditional text searchLimitation

Need for semantic understandingSemantics

Growing demand for context-aware 
searchDemand

Evolution from keywords to meaningEvolution



WHY USE POSTGRESQL FOR VECTOR SEARCHES?

1

0

Existing client libraries work without modification

Convenient to co-locate app and AI/ML data in same database 

PostgreSQL acts as persistent transactional store while working with other 
vector search systems

Note: Postgres, PostgreSQL, and the Slonik Logo are trademarks or registered trademarks of the PostgreSQL Community Association of Canada, and used with their permission



NATIVE VECTOR SUPPORT AND CHALLENGES

ARRAY data type

• Multiple data types (int4, int8, float4, float8)

• “Unlimited” dimensions

• No native distance operations
• Can add using Trusted Language Extensions + PL/Rust

• No native indexing

Cube data type

• float8 values

• Euclidean, Manhattan, Chebyshev distances

• K-NN GiST index – exact nearest neighbor 
search

• Limited to 100 dimensions



WHAT IS PGVECTOR?

Support for storage, indexing, searching, metadata with choice of 
distance

vector data types

Supports IVFFlat/HNSW indexing
Distance operators (<->, <=>, <#>, <+>, <~>, <%>)

Exact nearest neighbor (K-NN)

Approximate nearest neighbor (ANN)

Co-locate with embeddings

github.com/pgvector/pgvector
Note: <+>, <~>, and <%> operators available only from pgvector version 0.7.0

halfvec type to store 

half-precision vectors

(Added in 0.7.0)



CONCEPT OF AN EXACT NEAREST 
NEIGHBOURS SEARCH
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K NEAREST NEIGHBOR (K-NN)

• For exact match (100% recall) search on the 

PostgreSQL vector column without an index

• K-NN searches find the nearest neighbors 

for a query by comparing its vector to all 

stored vectors and returning the k closest 

ones.

Query vector

Found nearest neighbours



• Find similar vectors without 

searching all of them

• Faster than exact nearest neighbor

• “Recall” – % of expected results

Query vector

found nearest neighbours

missed nearest neighbours

APPROXIMATE NEAREST NEIGHBOR (ANN)



Euclidean (L2)   

Useful for counts / measurements 

Recommendation Systems 

Dot Product

Useful for collaborative filtering

Cosine Similarity 

Useful for semantic search and 

document classification

<->

<=>

<#>

PGVECTOR: OFFERS DISTANCE OPERATIONS



PGVECTOR EXAMPLE: QUERYING NEAREST NEIGHBOR

CREATE TABLE test_embeddings(product_id bigint, embeddings vector(3) );
INSERT INTO test_embeddings VALUES
(1, '[1, 2, 3]'), (2, '[2, 3, 4]'), (3, '[7, 6, 8]'), (4, '[8, 6, 9]’);

SELECT product_id, embeddings, embeddings <-> '[3,1,2]' AS distance
FROM test_embeddings ORDER BY embeddings <-> '[3,1,2]’ limit 2;

product_id | embeddings |     distance
------------+------------+-------------------

1 | [1,2,3]    | 2.449489742783178
2 | [2,3,4]    |                 3

(2 rows)

• Supports exact and approximate nearest neighbor (ANN) search

• L2 distance <->

• Inner product <#>

• Cosine distance <=>



INDEXING PGVECTOR – LISTS & PROBES
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2D VECTOR EMBEDDING EXAMPLE

d = √[(x2 - x1)² + (y2 - y1)²]



VECTOR INDEXING

Unstructured Data

Index Enbeddings

[ .4 .5 .8 .3 .6 .2 .8 … ]

[ .2 .4 .3 .4 .8 .1 .4 … ]

[ .6 .5 .7 .2 .6 .4 .8 … ]

[ .8 .1 .3 .3 .2 .6 .4 … ]

[ .9 .1 .5 .5 .9 .8 .6 … ]

[ .2 .5 .2 .8 .3 .1 .1 … ]

[ .7 .5 .9 .1 .8 .3 .5 … ]

[ .1 .5 .2 .8 .4 .1 .7 … ]



IVFFLAT INDEX BUILDING PARAMETERS

• lists

• Number of “buckets/regions/clusters” for organizing vectors

• Tradeoff between number of vectors in bucket and relevancy



BEST PRACTICES FOR BUILDING IVFFLAT
INDEXES

• Choose value of lists to maximize recall but minimize effort of search

• < 1MM vectors: # vectors / 1000

• > 1MM vectors: √(# vectors)

• May be necessary to rebuild when adding/modifying vectors in index

• Use parallelism to accelerate build times

• Increase maintenance_work_mem for faster index creation



• Index can be created on empty table

• Longer time to build and requires more 

memory, but better recall

• vector - up to 2,000 dimensions

halfvec - up to 4,000 dimensions (added in 

0.7.0)

bit - up to 64,000 dimensions (added in 0.7.0)

sparsevec - up to 1,000 non-zero elements 

(added in 0.7.0)

https://jkatz05.com/post/postgres/pgvector-hnsw-performance/

HNSW (Hierarchical Navigable Small Worlds)

Source: https://tembo.io/blog/vector-indexes-in-pgvector/#hnsw



BEST PRACTICES FOR HNSW INDEXES

• Building HNSW indexes

• Default values (M=16,ef_construction=64) usually work

• (pgvector 0.5.1) Start with empty index and use concurrent writes to accelerate builds

• INSERT or COPY

• Performance strategies

• Index building has biggest impact on performance/recall

• Increasing hnsw.ef_search increases recall, decreases performance



WHICH INDEX DO I CHOOSE?

If you care more about index size, then choose IVFFlat1

If you care more about index build time, then select IVFFlat2

If you care more about speed, then choose HNSW3

If you expect vectors to be added or modified, then select HNSW4



DEMO: RECOMMENDATION 
SEARCH USING PGVECTOR





Q&A



Thank you!


