
FROM TEXT TO MEANING: PGVECTOR

REVOLUTIONIZES POSTGRESQL SEARCH

Vivek Singh

Principal Database Specialist – PostgreSQL

Amazon Web Services

Kiran Janarthan Singh

Sr Database Specialist SA

Amazon Web Services

POSTGRES

CONFERENCE

2025

AGENDA

• Introduction

• What is vector and embedding

• Search concept

• PostgreSQL as vector store

• Vector indexes deep dive

• Demo: AI powered similarity search using pgvector

• Questions

GENERATIVE AI

Artificial intelligence (AI)
Any technique that allows computers to mimic human intelligence using logic,
if-then statements, and machine learning

Machine learning (ML)
A subset of AI that uses machines to search for patterns in data to build logic
models automatically

Deep learning (DL)
A subset of ML composed of deeply multi-layered neural networks
that perform tasks like speech and image recognition

Generative AI
Powered by large models that are pre-trained on vast corpora of
data and commonly referred to as foundation models (FMs)

E M B E D D I N G S R E P R E S E N T I N G

S I M I L A R C O N T E X T / V E C T O R S C A N

F O R M C L U S T E R S

VECTOR SPACE

WHAT ARE VECTOR EMBEDDINGS?

New York

Beijing

Animal

0.027 -0.011 -0.023…

0.025 -0.009 -0.025…

-0.011 0.021 0.013…

Text Embeddings

Embedding model

Paris 0.024 -0.012 -0.021…

Horse
-0.009 0.019 0.015…

Airplane -0.048 0.079 0.076…

WHAT IS A VECTOR EMBEDDING ?

• A numerical representation of words or sentences, used in NLP

• NLP models can easily perform tasks such as querying, classification, and

applying machine learning algorithms on textual data

“I am at PostgreSQL Conference 2025”

[0.743, 0.720, -0.325, 0.195, 0.835, -0.945]

n-dimensional vector

VECTOR DATABASES

Pinecone

Weaviate

Milvus

Chroma

Pgvector

POSTGRESQL AS A VECTOR STORE

RISKS OF NOT UPGRADING POSTGRESQL DATABASE

Limitations of traditional text searchLimitation

Need for semantic understandingSemantics

Growing demand for context-aware
searchDemand

Evolution from keywords to meaningEvolution

WHY USE POSTGRESQL FOR VECTOR SEARCHES?

1

0

Existing client libraries work without modification

Convenient to co-locate app and AI/ML data in same database

PostgreSQL acts as persistent transactional store while working with other
vector search systems

Note: Postgres, PostgreSQL, and the Slonik Logo are trademarks or registered trademarks of the PostgreSQL Community Association of Canada, and used with their permission

NATIVE VECTOR SUPPORT AND CHALLENGES

ARRAY data type

• Multiple data types (int4, int8, float4, float8)

• “Unlimited” dimensions

• No native distance operations
• Can add using Trusted Language Extensions + PL/Rust

• No native indexing

Cube data type

• float8 values

• Euclidean, Manhattan, Chebyshev distances

• K-NN GiST index – exact nearest neighbor
search

• Limited to 100 dimensions

WHAT IS PGVECTOR?

Support for storage, indexing, searching, metadata with choice of
distance

vector data types

Supports IVFFlat/HNSW indexing
Distance operators (<->, <=>, <#>, <+>, <~>, <%>)

Exact nearest neighbor (K-NN)

Approximate nearest neighbor (ANN)

Co-locate with embeddings

github.com/pgvector/pgvector
Note: <+>, <~>, and <%> operators available only from pgvector version 0.7.0

halfvec type to store

half-precision vectors

(Added in 0.7.0)

CONCEPT OF AN EXACT NEAREST
NEIGHBOURS SEARCH

13

K NEAREST NEIGHBOR (K-NN)

• For exact match (100% recall) search on the

PostgreSQL vector column without an index

• K-NN searches find the nearest neighbors

for a query by comparing its vector to all

stored vectors and returning the k closest

ones.

Query vector

Found nearest neighbours

• Find similar vectors without

searching all of them

• Faster than exact nearest neighbor

• “Recall” – % of expected results

Query vector

found nearest neighbours

missed nearest neighbours

APPROXIMATE NEAREST NEIGHBOR (ANN)

Euclidean (L2)

Useful for counts / measurements

Recommendation Systems

Dot Product

Useful for collaborative filtering

Cosine Similarity

Useful for semantic search and

document classification

<->

<=>

<#>

PGVECTOR: OFFERS DISTANCE OPERATIONS

PGVECTOR EXAMPLE: QUERYING NEAREST NEIGHBOR

CREATE TABLE test_embeddings(product_id bigint, embeddings vector(3));
INSERT INTO test_embeddings VALUES
(1, '[1, 2, 3]'), (2, '[2, 3, 4]'), (3, '[7, 6, 8]'), (4, '[8, 6, 9]’);

SELECT product_id, embeddings, embeddings <-> '[3,1,2]' AS distance
FROM test_embeddings ORDER BY embeddings <-> '[3,1,2]’ limit 2;

product_id | embeddings | distance
------------+------------+-------------------

1 | [1,2,3] | 2.449489742783178
2 | [2,3,4] | 3

(2 rows)

• Supports exact and approximate nearest neighbor (ANN) search

• L2 distance <->

• Inner product <#>

• Cosine distance <=>

INDEXING PGVECTOR – LISTS & PROBES

18

2D VECTOR EMBEDDING EXAMPLE

d = √[(x2 - x1)² + (y2 - y1)²]

VECTOR INDEXING

Unstructured Data

Index Enbeddings

[.4 .5 .8 .3 .6 .2 .8 …]

[.2 .4 .3 .4 .8 .1 .4 …]

[.6 .5 .7 .2 .6 .4 .8 …]

[.8 .1 .3 .3 .2 .6 .4 …]

[.9 .1 .5 .5 .9 .8 .6 …]

[.2 .5 .2 .8 .3 .1 .1 …]

[.7 .5 .9 .1 .8 .3 .5 …]

[.1 .5 .2 .8 .4 .1 .7 …]

IVFFLAT INDEX BUILDING PARAMETERS

• lists

• Number of “buckets/regions/clusters” for organizing vectors

• Tradeoff between number of vectors in bucket and relevancy

BEST PRACTICES FOR BUILDING IVFFLAT
INDEXES

• Choose value of lists to maximize recall but minimize effort of search

• < 1MM vectors: # vectors / 1000

• > 1MM vectors: √(# vectors)

• May be necessary to rebuild when adding/modifying vectors in index

• Use parallelism to accelerate build times

• Increase maintenance_work_mem for faster index creation

• Index can be created on empty table

• Longer time to build and requires more

memory, but better recall

• vector - up to 2,000 dimensions

halfvec - up to 4,000 dimensions (added in

0.7.0)

bit - up to 64,000 dimensions (added in 0.7.0)

sparsevec - up to 1,000 non-zero elements

(added in 0.7.0)

https://jkatz05.com/post/postgres/pgvector-hnsw-performance/

HNSW (Hierarchical Navigable Small Worlds)

Source: https://tembo.io/blog/vector-indexes-in-pgvector/#hnsw

BEST PRACTICES FOR HNSW INDEXES

• Building HNSW indexes

• Default values (M=16,ef_construction=64) usually work

• (pgvector 0.5.1) Start with empty index and use concurrent writes to accelerate builds

• INSERT or COPY

• Performance strategies

• Index building has biggest impact on performance/recall

• Increasing hnsw.ef_search increases recall, decreases performance

WHICH INDEX DO I CHOOSE?

If you care more about index size, then choose IVFFlat1

If you care more about index build time, then select IVFFlat2

If you care more about speed, then choose HNSW3

If you expect vectors to be added or modified, then select HNSW4

DEMO: RECOMMENDATION
SEARCH USING PGVECTOR

Q&A

Thank you!

