
Tune PostgreSQL for Read/Write Scalability.

Ibrar Ahmed
Senior Database Architect
Percona LLC

Technical Breakout

Postgres Conference
Silicon Valley 2022
San Jose / United Statues
April 07-08, 2022

Who am I?
Software Career
• Software industries since 1998.

PostgreSQL Career
• Working on PostgreSQL Since 2006.

• EnterpriseDB (Associate Software

Architect core Database Engine) 2006-

2009

• EnterpriseDB (Software Architect core

Database Engine) 2011 - 2016

• EnterpriseDB (Senior Software Architect

core Database Engine) 2016 – 2018

• Percona (Senior Software Architect core

Database Engine) 2018 – Present

IBRAR AHMED
Senior Software Architect

Percona LLC

@ibrar_ahmad

https://www.facebook.com/ibrar.ahmed

https://www.linkedin.com/in/ibrarahmed74/ • PostgreSQL Developer's Guide

• PostgreSQL 9.6 High Performance

PostgreSQL Books

https://www.linkedin.com/in/ibrarahmed74/

Database
Performance

Key Factors about Database

Performance

Database
Benchmarking

Benchmark your database

PostgreSQL
Architecture

PostgreSQL Modules

Linux Kernel
Tuning

Tune you Linux Box

PostgreSQL
Performance

Tuning
Tune your PostgreSQL Box

Database Performance

Database Performance

02

Hardware

Choose your hardware wisely

Workload
Choose Database according to

your workload

Operating System

Operating System Selection and

Tuning

Database
Choose your database

according your data need

Software

Software Impact on database

performance

Database Performance

Software Type

Impact of badly written and well-defined software

Connectors

Choose your connector wisely

Queries

Impact of Database Queries on the database

Software

Processor

CPU performance and number of processor cores

Network

Network latency

Disk

Disk speed and size

Memory

Memory requirement for your workload

Hardware

Environment

Operating system environment according to your database
and application

Support

How good is your support for operating system

Performance

Operating system performance which suites your database

Compatibility

Operating system compatibility with your database and
application

Operating System

SQL / NOSQL

Is your workload best suited for SQL or NOSQL?

Read / Write Intensive

Is your workload Read or Write intensive?

OLTP / OLAP

Type of workload, is it OLAP or OLTP

Size of Workload

Size of workload is important for tunning

Workload

Database

PostgreSQL Architecture

02

Postmaster

Postgres Postgres Postgres

Shared_buffers WAL Buffers

Temp
BuffersCLOG buffers

13007/12831 13007/12833 13007/12832

000000010000000000000085 000000010000000000000090 00000001000000000000009B

Buffers

12832 12832

PostgreSQL Architecture

Log Files

Data Files ($PGDATA)

WAL Files (pg_wal)

Data Files (table space)

PostgreSQL
Performance Tuning

02

Tunning Parameter

PostgreSQL Tunning

Parameters

Partitioning
Partition your database when

require

PostgreSQL Indexes

Impact of index on Database

Performance

Monitoring
Monitor your database to

identify the bottleneck

Query Analysis

Analyze your queries for

optimal database performance

Database Performance

Memory based configuration parameters

shared_buffers

PostgreSQL
Memory buffer

work_mem

Buffer for sorting

wal_buffers

Buffer for WAL

maintenance_work_mem

Buffer for
Maintenance

activity

effective_cache_size

PostgreSQL Cache

Other

postgresql.conf file
contains all the

parameters

1
0
2

0
3

0
4

0
5

0
6

Tunning Parameters

shared_buffers
• PostgreSQL uses its own buffer along with kernel buffered I/O.
• PostgreSQL does not change the information on disk directly then how?
• Writes the data to shared buffer cache.
• The backend process write that these blocks kernel buffer.

postgresql=# SHOW shared_buffers;
shared_buffers

128MB

(1 row)

The proper size for the POSTGRESQL shared buffer cache is the largest useful size that does not adversely affect other activity.
—Bruce Momjian

wal_buffer

• Do you have Transaction? Obviously

• WAL – (Write Ahead LOG) Log your transactions

• Size of WAL files 16MB with 8K Block size (can be changed at compile time)

• PostgreSQL writes WAL into the buffers(wal_buffer) and then these buffers are flushed to disk.

Bigger value for wal_buffer in case of lot of concurrent connection gives better performance.

effective_cache_size

• This used by the optimizer to estimate the size of the kernel's disk buffer cache.

• The effective_cache_size provides an estimate of the memory available for disk caching.

• It is just a guideline, not the exact allocated memory or cache size.

work_mem

• This configuration is used for complex sorting.

• It allows PostgreSQL to do larger in-memory sorts.

• Each value is per session based, that means if you set that value to 10MB and 10 users issue sort queries then 100MB will

be allocated.

• In case of merge sort, if x number of tables are involved in the sort then x * work_mem will be used.

• It will allocate when required.

• Line in EXPLAIN ANALYZE “Sort Method: external merge Disk: 70208kB”

work_mem

postgres=# SET work_mem ='2MB';
postgres=# EXPLAIN ANALYZE SELECT * FROM foo ORDER BY id;

QUERY PLAN

Gather Merge (cost=848382.53..1917901.57 rows=9166666 width=9) (actual time=5646.575..12567.495
rows=11000000 loops=1)

-> Sort (cost=847382.51..858840.84 rows=4583333 width=9) (actual time=5568.049..7110.789 rows=3666667
loops=3)
Planning Time: 0.055 ms
Execution Time: 13724.353 ms

postgres=# SET work_mem ='1GB';
postgres=# EXPLAIN ANALYZE SELECT * FROM foo ORDER BY id;

QUERY PLAN

Sort (cost=1455965.01..1483465.01 rows=11000000 width=9) (actual time=5346.423..6554.609 rows=11000000
loops=1)

Sort Key: id
Sort Method: quicksort Memory: 916136kB
-> Seq Scan on foo (cost=0.00..169460.00 rows=11000000 width=9) (actual time=0.011..1794.912

rows=11000000 loops=1)
Planning Time: 0.049 ms
Execution Time: 7756.950 ms

maintenance_work_mem
• maintenance_work_mem is a memory setting used for maintenance tasks.
• The default value is 64MB.
• Setting a large value helps in tasks like

• VACUUM
• RESTORE
• CREATE INDEX
• ADD FOREIGN KEY
• ALTER TABLE.

maintenance_work_mem

CHECKPOINT;
SET maintenance_work_mem='10MB';
SHOW maintenance_work_mem;
maintenance_work_mem

10MB

(1 row)
postgres=# CREATE INDEX idx_foo ON foo(id);
Time: 12374.931 ms (00:12.375)

CHECKPOINT;
SET maintenance_work_mem='1GB';
SHOW maintenance_work_mem;
maintenance_work_mem

1GB

(1 row)
postgres=# CREATE INDEX idx_foo ON foo(id);
Time: 9550.766 ms (00:09.551)

synchronous_commit

• This is used to enforce that commit will wait for WAL to be written on disk before returning a success status to the client.

• This is a trade-off between performance and reliability.

• Increasing reliability decreases performance and vice versa.

Synchronous commit doesn't introduce the risk of corruption, which is really bad, just some risk of data loss.

https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server

I/O based configuration parameters

checkpoint_timeout

Time for checkpoint

max_wal_size
checkpoint_completion_tar

get

01
0
3

0
5

Tunning Parameters

Max WAL size Checkpoint completion
target

checkpoint_timeout

• PostgreSQL writes changes into WAL. The checkpoint process flushes the data into the data files.

• More checkpoints have a negative impact on performance.

• Frequent checkpoint reduce the recovery time

checkpoint_completion_target

• Specifies the target of checkpoint completion, as a fraction of total time between checkpoints.

• This parameter can only be set in the postgresql.conf file or on the server command line

max_wal_size

• Maximum size to let the WAL grow during automatic checkpoints.

• This is a soft limit; WAL size can exceed max_wal_size under special circumstances.

• This parameter can only be set in the postgresql.conf file or on the server command line.

PostgreSQL Indexes

02

Chapter 4

[87]

PostgreSQL comes with two main types of triggers: URZ�OHYHO�WULJJHU and statement-
OHYHO�WULJJHU. These DUH�VSHFLÀHG�ZLWK FOR EACH ROW (row-level triggers) and FOR
EACH STATEMENT (statement-level triggers). The two can be differentiated by how
many times the trigger is invoked and at what time. This means that if an UPDATE
statement is executed that affects 10 rows, the row-level trigger will be invoked 10
times, whereas the VWDWHPHQW�OHYHO�WULJJHU�GHÀQHG�IRU�D�VLPLODU�RSHUDWLRQ�ZLOO�EH�
invoked only once per SQL statement.

Triggers FDQ�EH�DWWDFKHG�WR�ERWK�WDEOHV�DQG�YLHZV��7ULJJHUV�FDQ�EH�ÀUHG�IRU�WDEOHV�
before or after any INSERT, UPDATE, or DELETE�RSHUDWLRQ��WKH\�FDQ�EH�ÀUHG�RQFH�SHU�
affected row, or once per SQL statement. Triggers can be executed for the TRUNCATE
statements as well. When a trigger event occurs, the trigger function is invoked
WR�PDNH�WKH�DSSURSULDWH�FKDQJHV�DV�SHU�WKH�ORJLF�\RX�KDYH�GHÀQHG�LQ�WKH�WULJJHU�
function.

7KH�WULJJHUV�GHÀQHG�ZLWK�INSTEAD OF are used for INSERT, UPDATE, or DELETE on the
YLHZV��,Q�WKH�FDVH�RI�YLHZV��WULJJHUV�ÀUHG�EHIRUH�RU�DIWHU�INSERT, UPDATE, or DELETE
FDQ�RQO\�EH�GHÀQHG�DW�WKH�VWDWHPHQW�OHYHO��ZKHUHDV�WULJJHUV�WKDW�ÀUH�INSTEAD OF on
INSERT, UPDATE, or DELETE�ZLOO�RQO\�EH�GHÀQHG�DW�WKH�URZ�OHYHO�

Triggers are quite helpful where your database is being accessed by multiple
DSSOLFDWLRQV��DQG�\RX�ZDQW�WR�PDLQWDLQ�FRPSOH[�GDWD�LQWHJULW\��WKLV�ZLOO�EH�GLIÀFXOW�
with available means) and monitor or log changes whenever a table data is being
PRGLÀHG�

The next topic is a concise explanation of tricky trigger concepts and behaviors that
we discussed previously. They can be helpful in a database design that involves
triggers.

Tricky triggers
In FOR EACH ROW triggers, function variables contain table rows as either a NEW or
OLD record variable, for example, in the case of INSERT, the table rows will be NEW, for
DELETE, it is OLD, and for UPDATE, it will be both. The NEW variable contains the row
after UPDATE and OLD variable holds the row state before UPDATE.

Hence, you can manipulate this data in contrast to FOR EACH STATEMENT triggers.
This explains one thing clearly, that if you have to manipulate data, use FOR EACH
ROW triggers.

The next question that strikes the mind is how to choose between row-level AFTER
and BEFORE triggers.

[246]

about 178

using 178, 179

PQsetdbLogin function
about 178

using 178

prepared statements, executing
PQexecPrepared, using 186, 187

PQprepare, using 185, 186

Q
query, executing

about 184

PQexecParams, using 185

PQexec, using 184

query optimization
about 137

FRQÀJXUDWLRQ�SDUDPHWHUV�����
cost parameters 141

EXPLAIN command 138

hints 151

query planning
about 149, 150

window functions 150, 151

TXHU\�WUHH�����

R
range partition

about 124

constraint exclusion, enabling 129

index, creating on child tables 127

master table, creating 124, 125

range partition table, creating 125, 126

trigger, creating on master table 127, 128

UDQN���IXQFWLRQ
about 114

calling 114

URZ�OHYHO�WULJJHU����
URZBQXPEHU���IXQFWLRQ

about 113

calling 113

rules
about 85

versus triggers 103, 104

S

VFKHPDBQDPH�SDUDPHWHU�����
VHOI�MRLQ�����
semi join 148
VHTXHQWLDO�VFDQ����������
VHW�RI�YDULDEOHV��7ULJJHU'DWD

NEW 90

OLD 90

TG_OP 90

TG_TABLE_NAME 90

TG_WHEN 90

VKDUHGBEXIIHUV�SDUDPHWHU�����
single-column index

about 69

creating 69, 70

SQL commands, running
about 203

dynamic SQL 206

host variables, using 205

values, obtaining from SQL 205

values, passing to SQL 205

SQL Communication Area (sqlca)
about 210

using 210-212

64/�ÀOH�����
64/�0('��64/�0DQDJHPHQW�RI�([WHUQDO�

'DWD������
start up cost 138
VWDWHPHQW�OHYHO�WULJJHU����
status functions

PQresStatus, using 196

PQresultStatus, using 195

using 195

T
table partition

creating 123

TriggerData
about 86

set of variables 90

trigger function
about 85, 86

creating, with PL/pgSQL 90-92

GHÀQLQJ����
triggers

about 86

creating, in PL/Perl 96-98

Heap / Index

B-Tree
PostgreSQL default index

Based on B-Tree

GIST
Generalized Search Tree

Hash
PostgreSQL Index Method

Based on Hasing

GIN
Generalized Inverted Index

Brin
Block Range Index

PostgreSQL Indexes

Sequential Scan
SELECT * FROM admin WHERE dt < '2021/04/01';
id | name | dt

-----+-------------+------------
3 | James | 2020-01-01
1 | Alex Johns | 2020-01-02
7 | Bob William | 2020-01-04
8 | Charli | 2020-01-01
6 | David | 2020-08-02
9 | Benjamin | 1990-01-02

SELECT ctid, * FROM admin WHERE id = 8;

ctid | id | name
-------+----+------
(1,0) | 16 | Charli
(1 rows)

Page size 8192 Bytes

pd_special 2 31

1 Alex John 01/02/2020

pd_lsn pd_checksum pd_flags pd_lower pd_upper

pd_pagesize_version pd_prune_xid

3 James 01/01/2020

7 Bob William 01/04/2020

Tuple 2

Line pointers

Page size 8192 Bytes

pd_special 2 31

8 Charli 01/01/2020

pd_lsn pd_checksum pd_flags pd_lower pd_upper

pd_pagesize_version pd_prune_xid

6 David 01/08/2020

1 Benjamin 01/02/1990

Tuple 2

Line pointers

B
loc

k 0
B

lock 1

B-Tree Index
SELECT id, name FROM admin
WHERE id = 8;

id | name
-----+------
8 | Charli

(1 rows)

Page size 8192 Bytes

pd_special 2 31

1 Alex John 01/02/2020

pd_lsn pd_checksum pd_flags pd_lower pd_upper

pd_pagesize_version pd_prune_xid

3 James 01/01/2020

7 Bob William 01/04/2020

Tuple 2

Line pointers

Page size 8192 Bytes

pd_special 2 31

8 Charli 01/01/2020

pd_lsn pd_checksum pd_flags pd_lower pd_upper

pd_pagesize_version pd_prune_xid

6 David 01/08/2020

1 Benjamin 01/02/1990

Tuple 2

Line pointers

B
loc

k 0

B
lock 1

9 36 69

9 16 32 36 53 58 69 74 100

54533936 6058191698 34732 75747069 105100

ctid
(3,1)(2,8)(2,2)(2,1) (4,1)(3,2)(1,3)(1,2)0(1,1) (1,8)(1,2) (5,1)(4,8)(4,7)(4,3) (7,2)(5,2)

Hash Index
SELECT id, name FROM admin WHERE name
LIKE ‘Alex Johns’;

id | name
-----+------
16 | Alex Johns

(1 rows)

Alex Johns

James

Bob William

Charli

David

Benjamin

0000

0010

0011

0100

0101

0111

0,0

0,1

0,2

1,0

1,1

1,2

Fh(x)

CT
I

D

Page size 8192 Bytes

pd_special 2 31

1 Alex John 01/02/2020

pd_lsn pd_checksum pd_flags pd_lower pd_upper

pd_pagesize_version pd_prune_xid

3 James 01/01/2020

7 Bob William 01/04/2020

Tuple 2

Line pointers

Page size 8192 Bytes

pd_special 2 31

8 Charli 01/01/2020

pd_lsn pd_checksum pd_flags pd_lower pd_upper

pd_pagesize_version pd_prune_xid

6 David 01/08/2020

1 Benjamin 01/02/1990

Tuple 2

Line pointers

B
loc

k 0

B
lock 1

Linux Tuning for
PostgreSQL

02

Memory Architecture

How to create indexes in

PostgreSQL

Tunning Parameters
Tune your Linux Box

Huge Pages

Linux Huge pages

Monitoring
Monitor your Linux OS

Transparent Huge Pages

Linux Transparent Huge Pages

Linux Tunning

Input Output Handling

• Direct IO, Buffered IO and Double buffering

• PostgreSQL believes that the Operating system (Kernel) knows much better about storage and IO scheduling.

• PostgreSQL has its own buffering; and also needs the pages cache. Double Buffering

• It Increase the use of memory.

• And different kernel and setting behave differently.

Virtual Memory

• Every process is given the impression that it is working with large, contiguous sections of memory

• Each process runs in its own dedicated address space

• Pages Table are used to translate the virtual addresses seen by the application into Physical Address

• https://en.wikipedia.org/wiki/Virtual_memory
• https://en.wikipedia.org/wiki/Page_table

https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Page_table

Translation Lookaside Buffer (TLB)

• Translation Lookaside Buffer is a memory cache

• It reduce the time to access a user memory location

• If a match is found the physical address of the page is returned → TLB hit

• If match not found scan the page table (walk)

• looking for the address mapping (entry) → TLB miss

Small page size bigger TLB size → expensive

Memory Pages

• PostgreSQL uses its own buffer along with kernel buffered I/O.

• PostgreSQL does not change the information on disk directly then how?

• Writes the data to shared buffer cache.

• The backend process write that these blocks kernel buffer.

Linux Page sizes

• Linux Page size is 4K
• Many modern processors support other page sizes

• If we consider a server with 256G of RAM:

4K 6710886
4

2M 131072

1G 256large/huge pages

Classic Huge Pages

cat /proc/meminfo

MemTotal: 264041660 kB

...

Hugepagesize: 2048 kB

DirectMap4k: 128116 kB

DirectMap2M: 3956736 kB

DirectMap1G: 266338304 kB

sysctl -w vm.nr_hugepages=256

Classic Huge Pages

overcommit_memory
&

overcommit_ratio

Tranparent Huge
Pages

dirty_background_ratio
&

dirty_background_bytes

swappines

vm.dirty_ratio
&

vm.dirty_bytes

1
0
3

0
5

0
2

0
4

0
6

Tunning Parameters

Classic Huge Pages

•# vi /etc/default/grub
• GRUB_CMDLINE_LINUX_DEFAULT="hugepagesz=1GB default_hugepagesz=1G”

•# update-grub
• Generating grub configuration file ...

• Found linux image: /boot/vmlinuz-4.4.0-75-generic

• Found initrd image: /boot/initrd.img-4.4.0-75-generic

• Found memtest86+ image: /memtest86+.elf

• Found memtest86+ image: /memtest86+.bin

• Done

•# shutdown -r now

Classic Huge Pages

• # vim /etc/postgresql/10/main/postgresql.conf

• huge_pages=ON # default is try

• # service postgresql restart

Transparent Huge pages

• The kernel works in the background (khugepaged) trying to:

• "create" huge pages.

• Find enough contiguous blocks of memory

• Convert them into a huge page

• Transparently allocate them to processes when there is a "fit"

Disabling Transparent Huge pages
cat /proc/meminfo | grep AnonHuge

AnonHugePages: 2048 kB

ps aux | grep huge

root 42 0.0 0.0 0 0 ? SN Jan17 0:00 [khugepaged]

To disable it:

at runtime:

echo never > /sys/kernel/mm/transparent_hugepage/enabled

echo never > /sys/kernel/mm/transparent_hugepage/defrag

at boot time:

GRUB_CMDLINE_LINUX_DEFAULT="(...) transparent_hugepage=never"

vm.swappines

• This is another kernel parameter that can affect the performance of the database.

• Used to control the swappiness (swapping pages to swap memory into RAM) behavior on a Linux system.

• The parameter can take anything from “0” to “100”.

• The default value is 60.

• Higher value means more aggressively swap.

vm.overcommit_memory and vm.overcommit_ratio

• Applications acquire memory and free that memory when it is no longer needed.

• But in some cases, an application acquires too much memory and does not release it. This can

invoke the OOM killer.

• This is used to control the memory over-commit.

• It has three options

§ Heuristic overcommit, Do it intelligently (default); based kernel heuristics

§ Allow overcommit anyway

§ Don’t over commit beyond the overcommit ratio.

vm.dirty_background_ratio and vm.dirty_background_bytes

• The vm.dirty_background_ratio is the percentage of memory filled with dirty pages that need to be flushed to disk.

• Flushing is done in the background.

• The value of this parameter ranges from 0 to 100;

vm.dirty_ratio / vm.dirty_bytes

• The vm.dirty_background_ratio is the percentage of memory filled with dirty pages that need to be flushed to disk.

• Flushing is done in the foreground.

• The value of this parameter ranges from 0 to 100;

Blogs

• Tuning PostgreSQL Database Parameters to Optimize Performance.
https://www.percona.com/blog/2018/08/31/tuning-postgresql-database-parameters-to-optimize-
performance/

• Tune Linux Kernel Parameters For PostgreSQL Optimization
https://www.percona.com/blog/2018/08/29/tune-linux-kernel-parameters-for-postgresql-optimization/

https://www.percona.com/blog/2018/08/31/tuning-postgresql-database-parameters-to-optimize-performance/
https://www.percona.com/blog/2018/08/29/tune-linux-kernel-parameters-for-postgresql-optimization/

GET IN TOUCH

www.pgelephant.com

THANK YOU
@ibrar_ahmad

https://www.facebook.com/ibrar.ahmed

https://www.linkedin.com/in/ibrarahmed74/

https://www.linkedin.com/in/ibrarahmed74/

