
Dr. Rebecca Bilbro January 2021

Beyond
Off-the-Shelf

Consensus

02

03

01

I have no idea 😳

Eventual consistency is good enough for us.

We require strong consistency.

Question #1
Think about the app you’re

currently working on.

How much consistency does
it require?

02

03

01

We have total visibility and control over the region(s)
where user data is stored and replicated.

We added that cookie banner; wasn’t that enough?

It’s on our roadmap, but we haven’t tackled it yet.

Question #2
Think about the app you’re

currently working on.

How concerned are you
about compliance with CCPA,

GDPR, LGPD, etc. ?

02

03

01

I think our frontend uses gettext and
CLDR.

We track geographic deployments and data replication
to guarantee consistent UX around the world.

We haven’t started thinking about global
markets yet.

Question #3
Think about the app you’re

currently working on.

How well does your app
support i18n/l10n?

0201

04

Commercial ConsensusWhat is Consensus?
Clocks, quorums, and

distracted parliamentarians
etcd, Spanner, Aurora, and more

Growing Pains
The downsides of success

03
An API for Consensus
Consensus made open source

Table of contents

Dr. Rebecca Bilbro
● Founder & CTO, Rotational Labs, LLC
● Adjunct Faculty, Georgetown University
● Applied Text Analysis with Python, O’Reilly
● Creator & Maintainer, Scikit- Yellowbrick

@rebeccabilbro

What if data systems were
a little smarter?

rotational.io

What is Consensus?
01

Clocks, quorums, and distracted parliamentarians

Context: A Single Server

Picture a simple data storage
system where clients can:

- GET(key) → value
- PUT(key, value)
- DEL(key)

Context: A Single Server

The order of the operations
determines the responses the
system gives.

In a single server system, the
server can determine any
order it wants.

It is always consistent.

1 2

3

4

5

6

Consistency
The system responds to requests

predictably

Failure: A Single Server

Failure can occur for a lot of reasons,
from crashes to network outages and
is a routine.

In the single server system, when the
server fails the entire system
becomes unavailable.

Worse, data loss might occur for any
information stored on volatile
memory.

Context: A Distributed System

A system is distributed when it
contains more than one server that
must communicate.

If one server in the system fails, it
doesn’t necessarily become
unavailable because other servers
can answer requests.

If data is replicated we can also
avoid data loss.

Inconsistency

When multiple servers participate
in the system, they need to
communicate in order to ensure
they remain in the same state.

Communication takes time (latency)
and the more servers in the system,
the more time it takes to
synchronize.

PUT(x,
 42)

ok

GET(x)

not found

Concurrency

Because of delays in
communication, it is possible for
two clients to perform operations
concurrently. In other words, from
the system’s perspective, they
happen at the same time.

The order of these operations
determines the response.

PUT(x, 42)

PUT(x, 27)

GET(x) → ?

Consistency
Levels

Strong Consistency: any GET request is guaranteed
to return the most recent PUT request.

Causal Consistency: any PUT request will only be
delayed by dependent keys, not all keys.

Eventual Consistency: in the absence of PUT
requests, the system will eventually become
consistent.

Monotonic Reads: every GET returns a value that is
more up to date.

Synchronization and ordering increase
the amount of time it takes to make
requests, however consistency can be
relaxed to improve performance.

Consistency
Levels

Strong Consistency: any GET request is guaranteed
to return the most recent PUT request.

Causal Consistency: any PUT request will only be
delayed by dependent keys, not all keys.

Eventual Consistency: in the absence of PUT
requests, the system will eventually become
consistent.

Monotonic Reads: every GET returns a value that is
more up to date.

Most data systems that exist today are
eventually consistent, preferring
performance over a low likelihood of
inconsistency.

Consistency
Levels

Strong Consistency: any GET request is guaranteed
to return the most recent PUT request.

Causal Consistency: any PUT request will only be
delayed by dependent keys, not all keys.

Eventual Consistency: in the absence of PUT
requests, the system will eventually become
consistent.

Monotonic Reads: every GET returns a value that is
more up to date.

However, many applications require
strong consistency in addition to
performance but have to rely on
centralized systems.

Distributed
Consensus

Fault Tolerant Decision Making for
a Network of Replicas.

?

Paxos Consensus

Every server is a state machine that can
apply commands in a single order.

Each server maintains a log of the
operations (e.g. GET or PUT), and
applies those operations when the
entry in the log is committed.

Committing entries happens by
majority vote as follows.

Paxos Consensus

When a client makes a request, the
server requests a slot in the log to apply
a command, the “prepare” phase.

Paxos Consensus

When a client makes a request, the
server requests a slot in the log to apply
a command, the “prepare” phase.

If the other servers have that spot free,
they will reserve the slot for the
requesting server.

Paxos Consensus

If a majority of servers responds to the
prepare phase, the originating server,
will send the command to be applied to
the log in that spot, the accept phase.

Paxos Consensus

If a majority of servers responds to the
prepare phase, the originating server,
will send the command to be applied to
the log in that spot, the accept phase.

If a majority of servers reply to the
accept phase, the entry in the log is
committed.

Paxos Consensus

Even if servers fail, so long as a majority
of servers are still running, decisions
can be made.

Once the server returns, it can be
brought back up to date by the other
servers.

Rules for responding to the prepare
and accept phases ensure that there
will only ever be one log order.

Leader Optimization: Raft & Multi-Paxos

An optimization where the prepare
phase is performed once, ahead of
time by electing a designated leader.

Heartbeats are used to determine if the
leader has died and a new leader must
be elected.

This results in faster responses to
clients, but small outages during
elections.

Ballot Optimization: Mencius

To avoid a prepare phase, slots are
granted to leaders in a predetermined
fashion (e.g. round-robin).

Clients tend to broadcast to multiple
leaders in order to apply the command
to the next available slot.

Good for dense workloads with
continuous accesses. Compaction and
forwarding also help manage “empty”
log slots.

Optimistic Consensus: Fast Paxos, ePaxos

Attempt to commit a command in the
first phase, known as the “fast path”.
During the fast path commit, conflict
detection is applied.

If a conflict is detected, then perform
regular 2 phase Paxos (slow path).

If conflicts are rare, most accesses will
be fast path. But conflicts require 3
communication phases.

Commercial Consensus
02

etcd, Spanner, Aurora, and more

2001: Lamport publishes “Paxos Made Simple”

2006: Google develops Chubby, a distributed locking
service based on Paxos, to rescue the GFS

2010: Apache Zookeeper offers an open source version of
Chubby using a Paxos-variant called ZAB

2013: CoreOS releases etcd, based on Raft, to manage a
cluster of Container Linux.

2014: Google launches k8s using etcd for the
configuration store.

Chubby, Zookeeper, etcd, etcetera

“ZooKeeper… got popular and became the de
facto coordination service for cloud computing
applications. However, since the bar on using

the ZooKeeper interface was so low, it has been
abused/misused by many applications.

When ZooKeeper is improperly used, it often
constituted the bottleneck in performance of

these applications and caused scalability
problems.”

Ailijiang, Charapko, Demirbas (2016)

Chubby, Zookeeper, etcd, etcetera

“Despite the increased choices and
specialization of Paxos protocols and
Paxos systems, the confusion remains

about the proper use cases of these
systems and about which systems are

more suitable for which tasks.”

Ailijiang, Charapko, Demirbas (2016)

Chubby, Zookeeper, etcd, etcetera

Globally Distributed Databases

more global = more users

But… scaling consensus is hard

● The larger the quorum, the slower
it is to respond to requests.

● Things get worse when you have
servers in different data centers:
○ Latency increases because of physical

limits.

○ Network partitions can cut off groups
of servers.

○ Servers respond more quickly to
colocated clients.

Commercial cloud is
designed to work best
here, so hopefully that’s
where your users are!

Legalities of Global
Systems

Systems are regulated
in the countries where
the data resides (where
the servers are).

Building a global app
now means navigating
the complex waters of
data compliance.

Growing Pains
03

The downsides of success

Case Studies

“The launch of the augmented reality game Pokémon Go
was an unmitigated disaster. Due to extremely overloaded
servers from the release’s extreme popularity, users could
not download the game, login, create avatars, or find
augmented reality artifacts in their locales.

The game world was hosted by a suite of Google Cloud
services, primarily backed by the Cloud Datastore, a
geographically distributed NoSQL database. Scaling the
application to millions of users therefore involved
provisioning extra capacity to the database by increasing
the number of shards as well as improving load balancing
and autoscaling of application logic run in Kubernetes
containers.”

Bengfort (2019)

21 February 2018: 501c3 Signal
Technology Foundation formed

4 Jan 2021: WhatsApp updates their
privacy policy re: data sharing with
Facebook

7 Jan 2021: Elon Musk tells his 60M
followers to switch to Signal

13 January 2021: Signal goes from
10M users to 50M users in under 24
hours, bringing the service down for
several days.

Dropbox Annual Revenue 2016-2020

“Between February and October of 2015,
Dropbox successfully relocated 90 percent of
an estimated 600 petabytes of its customer
data to its in-house network of data centers
dubbed Magic Pocket.”

“It was clear to us from the beginning that we’d
have to build everything from scratch,” wrote
Dropbox infrastructure VP Akhil Gupta on his
company blog in 2016, “since there’s nothing in
the open source community that’s proven to
work reliably at our scale. Few companies in the
world have the same requirements for scale of
storage as we do.”

Fulton (2020)

Different systems need
different consensus solutions

An API for Consensus
04

Consensus made open source

scikit-learn

Transformer

fit()
transform()

Estimator

fit()
predict()

X, y

X, y

ŷ

X′

Data Loader

Transformer

Transformer

Estimator

fit()
predict()

2007: Google Summer of Code project

2010: INRIA releases first open source
version

2013: Authors publish “API design for
machine learning software:
experiences from the scikit-learn
project”

2021: 2k contributors, 47k stars, used by
246k projects on Github, including
scikit- Yellowbrick!

The central insight of
scikit-Yellowbrick is that there is

no one “best” machine
learning model, only a set of
best practices for finding the

best model for a given dataset.

Concur: An API for Consensus Network
How do we send messages? What

does messaging imply?

Peer Management
Who’s in? How to reconfigure? How do

newcomers join?

Decision Making
How to vote? How to detect conflict?

Who’s the leader?

Execution
When is a decision final?

sys := &system.New{
QuorumSize: 7,
Network: &message.Stream{

Protocol: grpc,
Volume: broadcast

},
PeerManagement: dynamic,
DecisionMaking: LeadershipStrategy,
Execution: onCommit,

}

if err := sys.Validate(); err != nil {
 return errors.New(“Invalid system: ”, err)
}

sys.Concur()

Want to contribute?
tinyurl.com/concurapi

Want to vent?
rebecca@rotational.io

https://tinyurl.com/concurapi
mailto:rebecca@rotational.io

CREDITS: This presentation template was created by Slidesgo,
including icons by Flaticon, and infographics & images by Freepik

Thank
You

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

