
Scaling PostgreSQL with

Persistent Memory
N a r e s h K u m a r I n n a a n d K e s h a v P r a s a d

Agenda

▪ What is Persistent Memory?

▪ Databases and Persistent Memory (PMEM)

▪ PostgreSQL storage architecture

▪ Scaling PostgreSQL with Memhive and PMEM

▪ Benchmarks

▪ Conclusions

Advent of Persistent Memory
▪ Persistent Memory is non-volatile, byte

addressable, low latency memory with
densities greater than or equal to DRAM.

▪ Sits between fast SSDs and DDR DRAM
in the storage-memory hierarchy, from a
capacity, performance and cost
perspective.

▪ Resides on the memory bus and directly
attaches to CPU. Fastest path for
applications to directly byte address
PMEM.

Databases and PMEM

▪ Databases are considered as one of the top use cases of PMEM -

scaling capacity and performance

Multiple ways of using PMEM:

▪ Storing DB Logs including redo log, Write Ahead Log (WAL), etc - the most

common use case (Eg: Redis AOF, Oracle)

▪ DB cache store (instead of storing in DRAM or as a cache tier)

▪ Relational data store (large "in-memory" store)

Databases and PMEM (contd..)

Conflicting modes of PMEM usage:

▪ Memory mode - transparent but inefficient and volatile

▪ AppDirect - complex but highly efficient and persistent
▪ fsdax, sector, devdax namespaces

PostgreSQL storage architecture

Traditional PostgreSQL

▪ PostgreSQL storage
architecture

▪ Cache data and metadata
on shared DRAM memory
via mmap(2)

▪ WAL and relation data laid
out as directories and files
(index, table) on a disk-
based file system.

Disk based storage

PostgreSQL server

Cache
(buffers +

meta)
DRAM

Client 1 Client 2 ….. Client N

DB
files ..

WAL
files

PostgreSQL cache layer

▪ Cache a.k.a shared buffer cache layer.

▪ Three layer buffer manager:

▪ SharedBufHash (map buffer tag to buf ID)

▪ BufferDescriptors (metadata)

▪ BufferBlocks (data buffers) – 8KB

▪ Each 8KB buffer directly holds the page

data of the on-disk table file it points to at

the offset.

Buffer table (hash)

BufferTag<->buffer_id

……..

Tag

BufferDescriptors[]

Buffer

tag
buffer_id

…..

On-disk

DB files

BufferBlocks

page page

Tag

DRAM

Server

processes

Scaling PostgreSQL with PMEM

Design considerations with PMEM

▪ AppDirect fsdax choices PostgreSQL:

▪ libpmemobj

▪ libpmem

▪ libpmemobj challenges with PostgreSQL:

▪ No pluggable storage engine like MySQL or MariaDB.

▪ Introducing TX_xxx() API required re-designing core storage paths.

▪ libpmem :

▪ Inline changes to existing storage paths, no design changes.

▪ CPU cache flush and drain operations (ordering barriers)

Additional design considerations
▪ libpmem provides no redundancy to protect against local DIMM failure, à la

libpmemobj poolsets. fsdax has no LVM mirror support.
▪ Critical for both WAL and DB relation files.

▪ PMEM RAS :
▪ bad blocks , unsafe shutdowns – detection and recovery.

▪ NUMA effects: more pronounced with PMEM.

Memhive PostgreSQL

▪ PMEM based persistent cache

▪ WAL files on PMEM

▪ DB relation files on PMEM

▪ Memhive Manager

Memhive
manager

Disk
storage

Memhive PostgreSQL
server

AppDirect (libpmem)

Client 1 Client 2 ….. Client N

PMEM

DB files
WAL
files

Persistent cache
(buffers+ desc)

DB
files

Persistent Cache

▪ PMEM based non-volatile cache
• BufferBlocks and BufferDescriptors

mapped to fsdax namespace on PMEM

• SharedBufHash on DRAM

▪ Durability guarantees:

▪ CPU cache flushes and batched drains at
critical points of the buffer manager.

▪ Flush/drain only for buffer blocks and
selected buffer descriptor fields.

▪ Use pmem_memcpy_nodrain() and
pmem_flush()+ pmem_drain() as
applicable.

Buffer table (hash)
BufferTag<->buffer_id

……..

Tag

BufferDescriptors[]

Buffer

tag
Buffer_id

…..

On-disk
DB files

pmem_map_file()

to PMEM (fsdax)

Tag

BufferBlocks

DRAM

Server

processes

pagepage

Persistent Cache (contd..)
▪ Server startup:

▪ PMEM bad blocks detection and recovery.

▪ Conditional and selective buffer persistence and free-list updates.

▪ Generate SharedBufHash entries for persisted buffers.

▪ Dual mode:

▪ Always persistent: CPU cache flush/drain for buffer contents and selected descriptor fields.

Persistence for both planned and unplanned server restarts.

▪ Selective persistence: No flush/drain after buffer/meta updates to avoid penalty (albeit

minimal). Persistence for planned server restarts only.

▪ Optimization for persisting meaningful buffers only:

▪ Avoid flushes/drains on short lived cache buffers (eg: VACUUM, COPY IN)

WAL and relational data on PMEM
▪ WAL on PMEM:

▪ Performance mode: fsdax type namespace, writes in the Xlog flush path replaced by
pmem_memcpy_xxx() calls

▪ Local (DIMM) redundancy mode: LVM mirror on sector type namespaces.

▪ Relational data files (indexes, tables) on sector type PMEM when DB size <= PMEM

size, cache on DRAM.

▪ PostgreSQL replication for redundancy with both sector and fsdax types.

Operation modes

Performance mode:

• Persistent cache + WAL on PMEM

• Relational files on disk

Local redundancy mode:

• Relational files + WAL on PMEM

• Cache on DRAM

Interleaved
fsdax

namespace0.0

Performance
(cache + WAL)

Mirror
volume

Redundancy
(WAL + relational data)

Non-interleaved
sector

namespace1.0

Non-interleaved
sector

namespace2.0

Memhive PostgreSQL server

PostgreSQL file layout

Standard Memhive with PMEM

The story in numbers

Strategic partnership with Intel®

▪ PMEM options: NVDIMM, Intel®
Optane™.

▪ Optane™ PMEM is ideal for vertically
scaling PostgreSQL due to the
price/capacity advantage.

▪ All benchmarking tests performed on
Intel’s SDP cloud server with Optane.

Test environment
Hardware

CPU Intel Cascade Lake Xeon processor 24 cores x 2 (2

threads per core)

DRAM 16 GB x 12

PMEM 128 GB Optane x 12

SSD 800 GB SATA SSD, 480GB SATA SSD x 2

Software

OS Fedora Core-31 Linux 5.5.8-200

PMDK 1.7

Standard Postgres PostgreSQL v12

Memhive V1.0

File system ext4

Test environment (contd..)

▪ All tests bound to one socket with numactl(8)
▪ 128 GB Optane PMEM x 6 (interleaved)
▪ Intel Xeon processor 24 cores x 1
▪ 16 GB RAM x 6

Benchmarks

DBT-3 (TPC-H) Test parameters:

Database sizes: 32, 64, 128 and 230 GB

Streams: 1, 5, 10 and 15

pgbench (TPC-B like) Test parameters:

Scaling factor: 24000, 350 GB database

Clients: 5, 10, 20 and 40

Jobs: 5

Time: 20 minutes

PostgreSQL config comparison
Standard PostgreSQL v12 Memhive PostgreSQL

Optane Persistent Cache N/A 400 GB

DRAM 90 GB 90 GB

WAL On SSD On Optane PMEM

Relation Data On SSD On SSD

Shared Buffers On DRAM On Optane PMEM

Benchmark results: OLAP - TPC-H DBT-3

Benchmark results: OLAP - TPC-H DBT-3

Benchmark results: OLTP - TPC-B like - Pgbench

Benchmark results: OLTP - TPC-B like - Pgbench

Benchmark results: Reduced RAM to 32G

Performance summary
• Upto 10x throughput in OLAP DBT-3 TPC-H workload

• Upto 5x query processing power in OLAP DBT-3 TPC-H workload

• Upto 15x Read transactions per second in OLTP TPC-B like PgBench

• Upto 3.5x Mixed Read/Write transactions per second in OLTP TPC-B like PgBench

• Negligible (2%-3%) impact of flush/drains.

Conclusions: PostgreSQL and PMEM

Conclusions
▪ PMEM as a persistent PostgreSQL cache

▪ PostgreSQL cache scales almost linearly with memory, making it ideal to reside on PMEM
due to $/GB advantage.

▪ Access to a large cache turns PostgreSQL into in-memory DB when DB size <= PMEM,
ideal for OLAP.

▪ Flushes/drains have minimal impact.

▪ Instant startup, constantly warm cache.

▪ Dramatic reduction in DRAM requirements for PostgreSQL.

▪ No strict need for redundancy. Upon PMEM DIMM failures/bad blocks/unsafe shutdowns,
cache is rebuilt from on-disk DB data files.

Conclusions
▪ PMEM for PostgreSQL data

▪ Ideal for storing relational objects such as WAL, table and index files.

▪ Combination of cache and WAL on PMEM leads to significant OLTP and OLAP
performance gains.

▪ libpmem: Device redundancy versus performance

Pure performance/no redundancy: fsdax for cache and WAL.

Performance/recoverable from H/W errors: fsdax for cache.

Local redundancy for critical data: LVM mirror over sector for WAL and relational files.

….else, use libpmemobj.

THANKS
For more information and a free trial, visit our website

www.memhive.io or

write to us at

info@memhive.io.

http://www.memhive.io
mailto:info@memhive.io

