
Using PostgreSQL for
Data Privacy and

Security

September 19, 2019

PostgresConf SV

Agenda
1. Intro

2. Foreign Data Wrappers

3. Row and Column Based Access

4. Roles & Purposes

5. Handling Privacy

1. De-identification (Masking)

2. K-anonymization

3. Differential Privacy

4. Identifying Private Data

6. Auditing/Logging

whoami
• Mason Sharp

• Worked on public and private PostgreSQL forks such as
Postgres-XL

• Including a geographically distributed database with
differing regional regulations

• Work at Immuta

• Data Governance Platform

Data Privacy

Privacy Regulations
• GDPR - General Data Protection Regulation (Europe)

• CCPA - California Consumer Privacy Act

• Becomes effective January 1, 2020

• HIPAA - Health Insurance Portability and Accountability Act

Privacy Regulations
• GDPR - General Data Protection Regulation (Europe)

• CCPA - California Consumer Privacy Act

• Becomes effective January 1, 2020

• HIPAA - Health Insurance Portability and Accountability Act

If you are not doing anything about
privacy now, you may be doing so
soon

Privacy Challenges
• Comply with local regulations and internal policies

• Make data useful

• Gain insight

• Better healthcare, better products and services at a lower cost

• Make data available for Data Scientists

• Machine Learning models need detailed data - a privacy risk

• Differential Privacy techniques add noise to data sets

• Too much noise, not useful; too little, privacy risk

• Provide access to data quickly

• Long ETL processes, developer resources

• Burdensome approval processes

Can PostgreSQL
Help?

Can PostgreSQL
Help?
Yes

Disclaimer: to be clear, the examples
presented here are not necessarily how

Immuta is implemented, the examples just
provide some ideas for basic functionality

for protecting data privacy

Foreign Data
Wrappers

Materialized
Views

PostgreSQL as Data Hub

Roles

Users

Purposes

Views

Foreign Sources Foreign Sources Foreign Sources

Foreign Data Wrappers
• Allows for querying external data sources, not just PostgreSQL

• https://wiki.postgresql.org/wiki/Foreign_data_wrappers

• SQL based

• PostgreSQL, MySQL, Oracle, MS SQL Server, Sybase, SQLite, MonetDB,
ClickHouse

• odbc_fdw

• NoSQL based

• Need to give structure to unstructured (JSON) data

• MongoDB, CouchDB, Redis, Riak

• File based

• CSV, Fixed, JSON

• Etc

• Hadoop (HDFS via Hive), HDFS

FDW Advantages
• Manage access to external data all in one place

• Join data against multiple external data sources at the
same time (Data Federation)

• Potentially avoid complex ETL processes

• Potentially avoid building a Data Lake

• PostgreSQL acts as a virtual Data Lake

FDW Limitations
• Perfomance

• What cannot be “pushed down” in the SQL
statement is done at the PostgreSQL level

• Sometimes not much can be pushed down- varies
by FDW

• May or may not include aggregates, joins,
functions

• Example: If a join cannot be pushed down, it
may bring back millions+ of rows from both
tables to join locally in PostgreSQL

• BUT, that may be ok if this is just used for
occasional read-only queries hitting production
replicas, not high volume TPS

odbc_fdw
• Supports any ODBC data source

• Slower than native connectors, but good for when none
available

• Pushdown is very limited

• Requires installing corresponding ODBC drivers on server
where PostgreSQL is running

postgres_fdw
• Good push down

• (Some) joins, aggregates, groups

• Also can be used with Greenplum, Redshift

Views
• Can reference foreign tables

• Allows control of what data can be accessed

• Big Caveat: may lead to an explosion of views based on
what users are able to access

• Maintenance headache

Materialized View
• Keep a copy of remote data in PostgreSQL, periodically

refresh

• Run slow queries less often, use the view instead

• Also may help against privacy attacks because more
difficult to get deltas of data source within short time
frame

• If masking based on role, need a base materialized view,
then a conditional masked view on top of that

Table Access

Table Access
• Via GRANT and REVOKE

• CREATE ROLEs for users

Row and Column Access

Company City State Zip

Luigis Aberdeen NJ 07747

Salernos Hazlet NJ 07730

:

Row and Column Access

Company City State Zip

ABC New York NY 10023

Salernos Hazlet NJ 07730

:

Columns

Rows

Row and Column Access

Company City State Zip

ABC New York NY 10023

Salernos Hazlet NJ 07730

:

Columns

Rows

• Limit row based access

• Via Row Level Security

• Via views

• Limit column based access

• Via native column-level permissions

• Via views

• Via masking

ROW LEVEL SECURITY

•CREATE POLICY name ON table_name

 [TO { role_name | PUBLIC | CURRENT_USER |

 SESSION_USER } [, ...]]

 [USING (using_expression)]

• ALTER TABLE

• DISABLE/ENABLE ROW LEVEL SECURITY

• “If enabled and no policies exist for the table, then a default-deny
policy is applied. Note that policies can exist for a table even if row
level security is disabled - in this case, the policies will NOT be
applied and the policies will be ignored.”

Row Level Policies
CREATE ROLE user1 LOGIN PASSWORD
‘password';

ALTER TABLE company ENABLE ROW LEVEL
SECURITY;

CREATE POLICY company_nj_access ON
company

 TO user1

 USING (state = ‘NJ');

GRANT SELECT ON company TO user1;

Row Level Policies
CREATE ROLE user1 LOGIN PASSWORD
‘password';

ALTER TABLE company ENABLE ROW LEVEL
SECURITY;

CREATE POLICY company_nj_access ON
company

 TO user1

 USING (state = ‘NJ');

GRANT SELECT ON company TO user1;

SELECT * FROM company;

 company | city | state | zip

----------+----------+-------+-------

 ABC | New York | NY | 10023

 Salernos | Hazlet | NJ | 07733

— user1

SELECT * FROM company;

 company | city | state | zip

----------+----------+-------+-------

 Salernos | Hazlet | NJ | 07733

Row Level Policies with Column Restrictions
CREATE ROLE user1 LOGIN PASSWORD
‘password';

ALTER TABLE company ENABLE ROW LEVEL
SECURITY;

CREATE POLICY company_nj_access ON
company

 TO user1

 USING (state = ‘NJ');

GRANT SELECT ON company TO user1;

SELECT * FROM company;

 company | city | state | zip

----------+----------+-------+-------

 ABC | New York | NY | 10023

 Salernos | Hazlet | NJ | 07733

— user1

SELECT * FROM company;

ERROR: permission denied for table
company

SELECT company, state FROM company;

 company | state

----------+-------

 Salernos | NJ

REVOKE SELECT ON company FROM user1;

GRANT SELECT (company, state) ON
company TO user1;

Using Views for Row & Column Restrictions
CREATE VIEW v_company AS

SELECT company, state

 FROM company

 WHERE state = ‘NJ’;

GRANT SELECT ON v_company TO user1;

— user1

SELECT * FROM v_company;

 company | state

----------+-------

 Salernos | NJ

Roles and Purposes

Purposes
• For what purpose is the data being accessed?

• A user may have access to see more of the data, but
depending on the purpose of why the data is being
accessed, only the needed data for the purpose should
be accessible

• Consider allowing only one purpose at a time for users

• Strict adherence to this for compliance

Can be achieved via ROLES

Roles
• CREATE ROLE and CREATE USER

• Very similar, but CREATE USER implies LOGIN privileges

• A role may be given multiple other roles

CREATE ROLE cfo WITH IN ROLE accounting, payroll

Or

CREATE ROLE cfo

ALTER ROLE accounting WITH ROLE cfo

ALTER ROLE payroll WITH ROLE cfo

Roles
CREATE ROLE name [[WITH] option [...]]

where option can be:

 SUPERUSER | NOSUPERUSER

 | CREATEDB | NOCREATEDB

 | CREATEROLE | NOCREATEROLE

 | INHERIT | NOINHERIT

 | LOGIN | NOLOGIN

 | REPLICATION | NOREPLICATION

 | BYPASSRLS | NOBYPASSRLS

 | CONNECTION LIMIT connlimit

 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL

 | VALID UNTIL 'timestamp'

 | IN ROLE role_name [, ...]

 | IN GROUP role_name [, ...]

 | ROLE role_name [, ...]

 | ADMIN role_name [, ...]

 | USER role_name [, ...]

 | SYSID uid

CREATE ROLE WITH NOINHERIT
& SET ROLE

• WITH INHERIT (the default)

• “automatically use whatever database privileges have been granted to all roles it
is directly or indirectly a member of”

• WITH NOINHERIT

• Only can act in the role via SET ROLE

SET ROLE accounting;

SET ROLE payroll;

• Forces the user to access data for a specific purpose

• View of the data may change depending on current role (purpose), even though
user may have access to multiple roles

Protect Data via Roles & Logins

1. Create roles for users with login privilege and WITH
NOINHERIT, without access to any tables

2. Create roles without login privileges to access table data
based on purpose

3. Grant purpose-based roles to user roles

4. Users may use only one role at a time

Handling Privacy

Handling Privacy:
De-identification

(Masking)

Why Mask?
• Just block/hide access to a column instead?

• Sometimes identifiers are mapped to another value so rows
can be later identified while not revealing the original value

• Example: Social security number

• Could use reversible masking where users may request to
have a specific data element unmasked from data governor

• Organizations sometimes have pre-canned queries and
reports that include sensitive columns

• Masking (if practical) allow reports to be used for users who
should not have access to the raw values in these columns,
and see the masked value instead

Masking Types
Type

NULL

Constant Example: <REDACTED>

Hash Example:
AB3D07F3169CCBD0ED6C4B45DE21519F9F938C72D24124998AAB949CE83BB51B

Regular Expression Example: 800-655-0982 -> 800-xxx-xxxx

Reversible Encryption Can request value to be decrypted by data governor

Format Preserving Encryption Data “looks” real, but it is encrypted

Example: 800-655-0982 -> 415-555-1212

Grouping (Rounding) Example (round month): date_of_birth

1999-04-12 -> 1999-04-01

— Mask column if user does not have SELECT privileges

CREATE OR REPLACE FUNCTION mask_text(

 table_name VARCHAR, column_name VARCHAR,

 column_value VARCHAR, masked_value VARCHAR)

RETURNS VARCHAR AS $$

 BEGIN

 RETURN CASE

 WHEN pg_catalog.has_column_privilege

 (CURRENT_USER, table_name, column_name, ‘select')

 THEN column_value

 ELSE masked_value

 END;

 END;

$$ LANGUAGE PLPGSQL;

CREATE OR REPLACE VIEW v_lineitem AS

SELECT mask_int('lineitem', 'l_orderkey', l_orderkey, NULL) AS l_orderkey,

 mask_int('lineitem', 'l_partkey', l_partkey, NULL) AS l_partkey,

 mask_int('lineitem', 'l_suppkey', l_suppkey, NULL) AS l_suppkey,

 mask_int('lineitem', 'l_linenumber', l_linenumber, NULL) AS l_linenumber,

 mask_numeric('lineitem', 'l_quantity', l_quantity, NULL) AS l_quantity,

 mask_numeric('lineitem', 'l_extendedprice', l_extendedprice, NULL) AS l_extendedprice,

 mask_numeric('lineitem', 'l_discount', l_discount, NULL) AS l_discount,

 mask_numeric('lineitem', 'l_tax', l_tax, NULL) AS l_tax,

 mask_text('lineitem', 'l_returnflag', l_returnflag, NULL) AS l_returnflag,

 mask_text('lineitem', 'l_linestatus', l_linestatus, NULL) AS l_linestatus,

 mask_date('lineitem', 'l_shipdate', l_shipdate, NULL) AS l_shipdate,

 mask_date('lineitem', 'l_commitdate', l_commitdate, NULL) AS l_commitdate,

 mask_date('lineitem', 'l_receiptdate', l_receiptdate, NULL) AS l_receiptdate,

 mask_text('lineitem', 'l_shipinstruct', l_shipinstruct, NULL) AS l_shipinstruct,

 mask_text('lineitem', 'l_shipmode', l_shipmode, NULL) AS l_shipmode,

 mask_text('lineitem', 'l_comment', l_comment, NULL) AS l_comment

 FROM lineitem;

Performance of Masking
• Table lineitem has 6 million rows

dbt3=# select count(*) from lineitem where l_quantity > 10;

 count

 4802275

(1 row)

Time: 754.323 ms

Performance of Masking
• Table lineitem has 6 million rows

dbt3=# select count(*) from lineitem where l_quantity > 10;

 count

 4802275

(1 row)

Time: 754.323 ms

dbt3=# select count(*) from v_lineitem where l_quantity > 10;
 count

 4802275

(1 row)

Time: 333254.483 ms (05:33.254)

Overhead of masking function is high, time went from < 1 second to 5 and a half minutes!

New View

• Get privileges just once, use CROSS JOIN

CREATE VIEW v_lineitem2 AS

SELECT CASE

 WHEN acc_l_quantity THEN l_quantity

 ELSE NULL

 END l_quantity

 FROM lineitem

 CROSS JOIN

 (SELECT pg_catalog.has_column_privilege(CURRENT_USER,

 ‘lineitem', 'l_quantity', 'select') acc_l_quantity)

 access_perms;

Performance of Masking
• Table lineitem has 6 million rows

dbt3=# select count(*) from lineitem where l_quantity > 10;

 count

 4802275

(1 row)

Time: 754.323 ms

dbt3=# select count(*) from v_lineitem where l_quantity > 10;

 count

 4802275

(1 row)

Time: 333254.483 ms (05:33.254)

dbt3=# select count(*) from v_lineitem2 where l_quantity > 10;

 count

 4802275

(1 row)

Time: 4109.049 ms (00:04.109)

Down to 4.1 seconds

Effects of Masked Columns
• WHERE

• View uses functions, so if lastname is masked to a constant for a user, a query
like

SELECT *

FROM v_patient

WHERE lastname = ‘Jones’

returns no rows

Effectively:

WHERE ‘<REDACTED>’ = ‘Jones’

• GROUP BY

• Constant masking: all rows for the grouped column go into the same group

Masked Joins
• WARNING: permitting linking data may expose identity!

• Example: age is one table, street name in other table

• If masked to a constant, joins will return all rows

• If masked to NULL, joins will return no rows

• Could consider creating views that include the join columns unmasked, but masks
SELECT-ed columns

• Maintenance headache to create many views of all combinations of masked joins

• table1 - table2

• table2 - table3

• table1 - table2 - table3

• Etc.

Handling Privacy:
K-anonymity

Aggregate Views
• Create views that only allow viewing aggregate data and hide detailed information

• However, information can be gleaned by periodically repeating the query

• If you know John Smith was just added, rerunning the aggregate where the
count increased by one will expose information by comparing aggregate
function results before and after

• Using materialized views will add some protection

• Result is cached, updated less frequently

• Repeated queries return the same result until refreshed

• Better performance

• Which groups of attributes to use? Σ

K-anonymity
• Reveal level of information such that each row cannot be distinguished from k

other rows in the data set

• Which columns to anonymize to satisfy? Think of data elements as being in three
groups:

• Identifiers

• Example: first name, last name, SSN

• Always suppress or mask

• Quasi-identifiers

• Example: zip code, gender, occupation

• Target these for k-anonymity— if we know enough with a small number of
rows we can identify someone

• Other Target Interesting Data

• With the other data elements protected, ok to release

• Example: Blood enzyme levels

K-anonymity
• It may be helpful to break up some column values into

ranges

• Example: age: 20 - 29, 30 - 39, etc.

• Example: zipcode: (substr(zipcode, 1, 2))

• Ideally, one could examine all data and generate groups
to ensure k-anonymity that are as small as possible

• If there is less than k rows for the group, use NULL

 SELECT * FROM v_patient_anon;

 firstname | lastname | city | county | state_cd | has_cancer | has_diabetes

------------+------------+----------+-----------+----------+------------+--------------

 <REDACTED> | <REDACTED> | | Middlesex | NJ | f | t

 <REDACTED> | <REDACTED> | | Middlesex | NJ | f | f

 <REDACTED> | <REDACTED> | | Middlesex | NJ | f | t

 <REDACTED> | <REDACTED> | | | NJ | t | f

 <REDACTED> | <REDACTED> | | | NJ | t | t

 <REDACTED> | <REDACTED> | | | NJ | t | f

 <REDACTED> | <REDACTED> | | | NJ | t | t

 <REDACTED> | <REDACTED> | New York | New York | NY | t | t

 <REDACTED> | <REDACTED> | New York | New York | NY | t | f

 <REDACTED> | <REDACTED> | New York | New York | NY | t | f

:

Adding Noise to
Queries

Adding Noise to Queries
• Numbers:

SELECT SUM(new_net_paid)

 FROM (SELECT

 ws_net_paid * (1 + 0.1*(random()-0.5))

 FROM web_sales) AS new_net_paid;

- random() is not deterministic here

- If rerunning multiple times we can take an average to get at
the real value

Adding Noise to Queries
Either:

• Use deterministic own random number (cryptographic hash + salt)

• Seed deterministically with setseed() function

SELECT ws_order_number, SUM(ws_net_paid), SUM(new_net_paid)

 FROM (SELECT ws_order_number,

 setseed((ws_bill_customer_sk + 12345)/

 power(2,64)),

 ws_net_paid,

 ws_net_paid*(1 + 0.1*(random()-0.5)) new_net_paid

 FROM web_sales) as new_sales

GROUP BY ws_order_number;

• setseed() is applied for each row based on customer id

• Nitpick: brute force risk

• Hide in view, do not allow users to see query plan

Differential Privacy

 count

———

 52943

Differential Privacy
• Given two databases D1 and D2 with one additional row

in D2, add enough noise such that querying either will
return a result indistinguishable from the other

• User unable to determine if row exists in data set

D1

D2

SELECT COUNT(*)

FROM dp_table

 count

———

 53876

 count

———

 51832

 count

———

 52943

Differential Privacy
“Differential privacy prevents an interested third party from
being able to infer, with statistical confidence, whose record
might be among the input, given the query output and
unlimited external knowledge”

D1

D2

SELECT COUNT(*)

FROM dp_table

 count

———

 53876

 count

———

 51832

Differential Privacy
• Differential Privacy is just a definition, not an algorithm

• Mechanisms

• Laplace Mechanism

• Exponential Mechanism

• Posterior Sampling

• Randomized Response

Differential Privacy
• Instead of plain random noise shown earlier, use ε (epsilon) differential privacy

• Mathematically ensures the same privacy if an individual’s data is present or removed

• Caveats:

• Repeating the query often enough may yield the true value

• Ideally would want the ability to track a privacy budget

• Query caching or materialized views can return the same result

• May be able to be defeated by slightly modifying the query

• Auditing can show that a user repeated query

• Not enough noise - private data revealed

• Fewer rows requires more noise

• Too much noise - data set not useful

• Analytics fail to gain insight

• Machine Learning models ineffective

Laplace Mechanism
• ε (epsilon): the higher epsilon is, more noise and

more privacy (privacy vs utility trade off)

• sensitivity: how much a column value can change

for additional row

- For COUNT(), sensitivity should be one

(A row is in the data set or not)

- For SUM(), sensitivity should be greatest(abs(max_value), abs(min_value))

• u = random sample [0,1]

• s = u - 0.5

• Added noise

SELECT agg(some_column) + sensitvity/epsilon * sign(s) * ln(1-2*abs(s)) FROM..

Example:

SELECT COUNT(*) + 1/2 * sign(s) * ln(1-2*abs(random() - 0.5)) FROM dp_table

Laplace Distribution

Randomized Response
• Used for a set of possible answers

• Example: cancer_found: true | false

• Flip a coin

• If heads, return actual value

• If tails, flip a coin again

• Return true for heads, false for tails

• 2 * (Reported Trues - 0.25 * count) =~ Actual Trues

• 0.25: 50% of the answers will be random, 50% of those true

• Individuals get plausible deniability, can state the answer was random

Anonymous Functions
anon_func PostgreSQL Extension
• Google announced a PostgreSQL extension (Sept 4, 2019)

https://github.com/google/differential-privacy/tree/master/
differential_privacy/postgres

• Defines new anonymous functions

• ANON_COUNT, ANON_SUM, ANON_AVG, ANON_VAR,
ANON_STDDEV, ANON_NTILE

• Requires careful manual rewriting of queries

• Could create views and restrict access to raw table

• Could access remote tables via FDWs, may pull over more rows

https://github.com/google/differential-privacy/tree/master/differential_privacy/postgres
https://github.com/google/differential-privacy/tree/master/differential_privacy/postgres

Anonymous Functions
anon_func PostgreSQL Extension

Manually Rewritten Query

(also accounting for more
than one row per person)

Identifying Private
Data

Identify Private Data
Tagging Services:

• Microsoft Presidio

• Google DLP API
(Data Loss
Prevention)

• Amazon Macie

Google DLP API

• Caveat: Must submit private data for tagging

Auditing

Auditing
Try to proactively restrict what users can see..

• But, also capture user queries

• Who ran what queries?

• Which tables were accessed?

• When were the queries run?

• Is a user repeatedly running the same or similar
queries in a short time frame?

Auditing - logging queries
• postgresql.conf logging options:

logging_collector = on

log_directory = log

log_filename = ‘postgresql-%Y-%m-%d_%H%M%S.log'

log_statement = 'all' # none,ddl,mod,all

log_line_prefix = '%m %u %d %p '

 #(timestamp, user, database, process id)

What about
pg_stat_statements?

• Collects statistics about statements run

• Useful for performance tuning

• May provide some insight, but

• Aggregates together unique statements

• Only tracks a maximum number of unique statements

pgAudit
• Free open source extension available for PostgreSQL

• Allows for more fine grained capturing of user activity

• Example: each time a table was accessed, not just the
entire query

• Harder to fool compared to generating dynamic SQL
EXECUTE statements

pgAudit - reported fields
Output Field Description

AUDIT_TYPE SESSION or OBJECT

STATEMENT_ID Unique statement ID for session

SUBSTATEMENT_ID Sequential ID for each sub-statement

CLASS e.g. READ, WRITE, DDL

COMMAND e.g. ALTER TABLE, SELECT

OBJECT_TYPE TABLE, VIEW, etc.

OBJECT_NAME e.g. public.account

STATEMENT Statement executed

PARAMETER Parameters if pgaudit.log_parameter is set

pgAudit - sample output
2019-08-21 16:07:38.325 EDT msharp test1 84870
LOG: AUDIT: SESSION,1,1,READ,SELECT,TABLE,
public.company1,select * from company1 limit
1;,<none>

• Timestamp, user, database, and process id (or others like
application) are not in pgAudit fields since they can be
specified via log_line_prefix.

• Output can be on multiple lines, careful if parsing output

pgAudit - use CSV logging?
• Alternatively:

log_destination = csvlog

https://www.postgresql.org/docs/11/runtime-config-
logging.html#RUNTIME-CONFIG-LOGGING-CSVLOG

• But the “AUDIT” info appears as a string, will need to pull
out info

Table for audit data
CREATE TYPE pgaudit_type AS ENUM ('SESSION', 'OBJECT');

CREATE TYPE pgaudit_class AS ENUM
 ('READ', 'WRITE', 'FUNCTION',
 'ROLE', 'DDL', 'MISC', 'MISC_SET');

CREATE TABLE pgaudit_log (
 db_timestamp timestamp,
 username varchar,
 db_name varchar,
 pid int,
 audit_type pgaudit_type,
 statement_id bigint,
 substatement_id int,
 class pgaudit_class,
 command varchar,
 object_type varchar,
 object_name varchar,
 statement varchar,
 parameter varchar);

audit_csv.py - formatting pgAudit output
import csv

import sys

csv.reader handles multi-line CSV input

reader = csv.reader(sys.stdin)

for row in reader:

 # get last word of first column

 if 'AUDIT: ' in row[0]:

 # PostgreSQL prefix is in element 0

 first = row[0].split(' ')

 db_timestamp = first[0] + ' ' + first[1] + ' ' + first[2]

 user = first[3]

 dbname = first[4]

 process = first[5]

 audit_type = first[-1] # SESSION or OBJECT

 print(‘{0},"{1}","{2}",{3},{4},{5},{6},{7},"{8}","{9}","{10}","{11}","{12}"'

 .format(db_timestamp, user, dbname, process, audit_type,row[1],row[2],row[3],

 row[4],row[5],row[6], row[7].translate(str.maketrans({"\"": r"\""})),row[8]))

Load individual files into
pgaudit_log

cat $LOGFILE |

python audit_csv.py |

psql -c "COPY pgaudit_log FROM STDIN WITH
(format csv, quote '\"', escape '\\')"
$DEST_DB

Query pgaudit_log Table
Query must frequently accessed table by user

SELECT username, object_type, object_name, COUNT(*)
 FROM pgaudit_log
 WHERE object_type = 'TABLE'
 AND object_name != 'public.pgaudit_log'
 AND db_timestamp BETWEEN '2019-08-01' AND '2019-08-22'
GROUP BY 1,2,3
ORDER BY count(*) DESC;

 username | object_type | object_name | count
-----------+-------------+-----------------+-------
 baduser | TABLE | public.visits | 4300
 msneaky | TABLE | public.patient | 1211
 :

Summary

Putting It All Together
• Avoid having multiple copies of data internally

• Use PostgreSQL for managing read-only access centrally

• Use Foreign Data Wrappers to make PostgreSQL a data hub

• Identify private data (Google DLP API, Microsoft Presidio, Amazon

Macie)

• CREATE ROLEs (no login permission) based on purpose

• Force (most) users only to be able to act under one role at a time

• Use row level security policies to limit access to rows

• Use column level permissions and/or masking to limit access to columns

• Use differential privacy and k-anonymity when appropriate

• CREATE VIEWs as needed, MATERIALIZED views if forcing the data to

be cached

• Use pgAudit to track query activity

View Approach

• Maintaining views may
become unmanageable

• Just “Marketing” as a
purpose may not be
enough

• Views may also need to
take into account

• Geography

• Business unit

• Regulations

..Or do it the easy way

• UI-Driven Data Governance

• Connects to 20+ different RDBMS

• Create Policies, Purposes & Projects

• Masked Joins

• Differential Privacy

• Access Approval Workflow and Alerting

• Query Auditing

• Intelligent Query Pushdown

• Spark Integration

Thank You

